黑洞加速器vnp-快连加速器app

LLD is a linker from the LLVM project that is a drop-in replacement for system linkers and runs much faster than them. It also provides features that are useful for toolchain developers.

The linker supports ELF (Unix), PE/COFF (Windows), Mach-O (macOS) and WebAssembly in descending order of completeness. Internally, LLD consists of several different linkers. The ELF port is the one that will be described in this document. The PE/COFF port is complete, including Windows debug info (PDB) support. The WebAssembly port is still a work in progress (See WebAssembly lld port). The Mach-O port is built based on a different architecture than the others. For the details about Mach-O, please read ATOM-based lld.

黑洞加速器vnp-快连加速器app

  • LLD is a drop-in replacement for the GNU linkers that accepts the same command line arguments and linker scripts as GNU.

    We are currently working closely with the FreeBSD project to make LLD default system linker in future versions of the operating system, so we are serious about addressing compatibility issues. As of February 2017, LLD is able to link the entire FreeBSD/amd64 base system including the kernel. With a few work-in-progress patches it can link approximately 95% of the ports collection on AMD64. For the details, see FreeBSD quarterly status report.

  • LLD is very fast. When you link a large program on a multicore machine, you can expect that LLD runs more than twice as fast as the GNU gold linker. Your mileage may vary, though.

  • It supports various CPUs/ABIs including AArch64, AMDGPU, ARM, Hexagon, MIPS 32/64 big/little-endian, PowerPC, PowerPC64, RISC-V, SPARC V9, x86-32 and x86-64. Among these, AArch64, ARM (>= v6), PowerPC, PowerPC64, x86-32 and x86-64 have production quality. MIPS seems decent too.

  • It is always a cross-linker, meaning that it always supports all the above targets however it was built. In fact, we don’t provide a build-time option to enable/disable each target. This should make it easy to use our linker as part of a cross-compile toolchain.

  • You can embed LLD in your program to eliminate dependencies on external linkers. All you have to do is to construct object files and command line arguments just like you would do to invoke an external linker and then call the linker’s main function, lld::elf::link, from your code.

  • It is small. We are using LLVM libObject library to read from object files, so it is not a completely fair comparison, but as of February 2017, LLD/ELF consists only of 21k lines of C++ code while GNU gold consists of 198k lines of C++ code.

  • Link-time optimization (LTO) is supported by default. Essentially, all you have to do to do LTO is to pass the -flto option to clang. Then clang creates object files not in the native object file format but in LLVM bitcode format. LLD reads bitcode object files, compile them using LLVM and emit an output file. Because in this way LLD can see the entire program, it can do the whole program optimization.

  • Some very old features for ancient Unix systems (pre-90s or even before that) have been removed. Some default settings have been tuned for the 21st century. For example, the stack is marked as non-executable by default to tighten security.

黑洞加速器vnp-快连加速器app

This is a link time comparison on a 2-socket 20-core 40-thread Xeon E5-2680 2.80 GHz machine with an SSD drive. We ran gold and lld with or without multi-threading support. To disable multi-threading, we added -no-threads to the command lines.

Program Output size GNU ld GNU gold w/o threads GNU gold w/threads lld w/o threads lld w/threads
ffmpeg dbg 92 MiB 1.72s 1.16s 1.01s 0.60s 0.35s
mysqld dbg 154 MiB 8.50s instagram免费永久加速器 2.68s 1.06s 0.68s
clang dbg 1.67 GiB 104.03s 34.18s instagram免费永久加速器 14.82s instagram加速器安卓下载
chromium dbg 1.14 GiB 209.05s [1] instagram免费永久加速器 60.82s instagram加速器安卓下载 instagram加速器安卓下载

As you can see, lld is significantly faster than GNU linkers. Note that this is just a benchmark result of our environment. Depending on number of available cores, available amount of memory or disk latency/throughput, your results may vary.

[1]Since GNU ld doesn’t support the instagram免费永久加速器 and -gdb-index options, we removed them from the command line for GNU ld. GNU ld would have been slower than this if it had these options.

黑洞加速器vnp-快连加速器app

If you have already checked out LLVM using SVN, you can check out LLD under tools directory just like you probably did for clang. For the details, see Getting Started with the LLVM System.

If you haven’t checked out LLVM, the easiest way to build LLD is to check out the entire LLVM projects/sub-projects from a git mirror and build that tree. You need cmake and of course a C++ compiler.

$ git clone http://github.com/llvm/llvm-project llvm-project
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_PROJECTS=lld -DCMAKE_INSTALL_PREFIX=/usr/local ../llvm-project/llvm
$ make install

黑洞加速器vnp-快连加速器app

LLD is installed as instagram加速器安卓下载. On Unix, linkers are invoked by compiler drivers, so you are not expected to use that command directly. There are a few ways to tell compiler drivers to use ld.lld instead of the default linker.

The easiest way to do that is to overwrite the default linker. After installing LLD to somewhere on your disk, you can create a symbolic link by doing ln -s /path/to/ld.lld /usr/bin/ld so that /usr/bin/ld is resolved to LLD.

If you don’t want to change the system setting, you can use clang’s -fuse-ld option. In this way, you want to set instagram免费永久加速器 to LDFLAGS when building your programs.

LLD leaves its name and version number to a instagram加速器安卓下载 section in an output. If you are in doubt whether you are successfully using LLD or not, run readelf --string-dump .comment <output-file> and examine the output. If the string “Linker: LLD” is included in the output, you are using LLD.

黑洞加速器vnp-快连加速器app

Here is a brief project history of the ELF and COFF ports.

  • 【安卓软件】安卓(android)软件免费下载/安卓游戏免费下载 ...:太平洋Android手机资源下载中心提供最新免费手机软件下载。包括Android(安卓)软件下载、Android(安卓)游戏下载,海量资源高速下载,android手机用户必备。
  • July 2015: The new ELF port was developed based on the COFF linker architecture.
  • September 2015: The first patches to support MIPS and AArch64 landed.
  • October 2015: Succeeded to self-host the ELF port. We have noticed that the linker was faster than the GNU linkers, but we weren’t sure at the time if we would be able to keep the gap as we would add more features to the linker.
  • 小鱼加速器_雷光加速器安卓_小语加速器app安卓官网:2021-6-14 · 小语网络加速器下载_小语网络加速器官方免费版8.0.2.2 - 系统之家 2021年1月6日 - 小语网络加速器是小语科技开发的最新产品,是一种新型的虚拟专用网络构建工具,它能够在 Internet网络中建立一条虚拟的专用通道。
  • Instagram视频下载器app下载_Instagram视频下载器 v1.1.83 ...:2021-4-28 · Instagram视频下载器安卓版是免费下载Instagram视频的视频下载工具,也可当作INS图片视频下载,完全免费使用,帮你从Instagram和Vine上下载或重新发布你喜欢的图片和视频。 软件介绍 Instagram下载器app手机版是针对Instagram软件视频下载工具。 ...

黑洞加速器vnp-快连加速器app

For the internals of the linker, please read instagram加速器安卓下载. It is a bit outdated but the fundamental concepts remain valid. We’ll update the document soon.

  • instagram加速器安卓下载
  • Design
  • instagram免费永久加速器
  • WebAssembly lld port
  • Windows support
  • Missing Key Function
  • Partitions
  • lld 12.0.0 Release Notes
  • Linker Script implementation notes and policy